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Abstract

Bird migration is a critical indicator of environmental
health, biodiversity, and climate change. Existing tech-
niques for monitoring bird migration are either expensive
(e.g., satellite tracking), labor-intensive (e.g., moon watch-
ing), indirect and thus less accurate (e.g., weather radar),
or intrusive (e.g., attaching geolocators on captured birds).
In this paper, we present a vision-based system for detecting
migrating birds in flight at night. Our system takes stereo
videos of the night sky as inputs, detects multiple flying birds
and estimates their orientations, speeds, and altitudes. The
main challenge lies in detecting flying birds of unknown tra-
jectories under high noise level due to the low-light environ-
ment. We address this problem by incorporating stereo con-
straints for rejecting physically implausible configurations
and gathering evidence from two (or more) views. Specif-
ically, we develop a robust stereo-based 3D line fitting al-
gorithm for geometric verification and a deformable part
response accumulation strategy for trajectory verification.
We demonstrate the effectiveness of the proposed approach
through quantitative evaluation of real videos of birds mi-
grating at night collected with near-infrared cameras.

1. Introduction

Bird migration is the regular seasonal, large-scale, of-
ten long-distance movement between breeding and winter-
ing grounds. Many species of bird migrate. Migration be-
havior is a critical indicator for evaluating environmental
health [24]. By identifying important stopover and winter-
ing locations, one can take action to save these key loca-
tions to protect endangered species. Scientists use a vari-
ety of methods to monitor bird migration, including satel-
lite tracking, weather radar, moon-watching, or attaching
geolocators on captured birds. However, these methods are
either expensive (e.g., satellite tracking), inaccurate because
they are indirect (e.g., weather surveillance radars), labor-
intensive and error-prone (e.g., moon-watching), or intru-
sive (e.g., geolocators). Moreover, these techniques only
crudely estimate the bulk density of migrating birds aloft.

Figure 2. An example of automatic bird detection in stereo se-
quences. Our system takes stereo videos of the night sky as inputs,
detects migrating birds in flight, and infers their orientation, speed,
and altitude in very low SNR.

We propose to use a vision-based approach as a comple-
mentary sensing modality to build a bird migration moni-
toring system. By setting up stereo cameras facing up to the
night sky, we can detect and track migrating birds in flight
illuminated from below by light pollution in the recorded
videos, as shown in Figure 2. Vision-based solutions offer
several advantages over existing techniques. First, we can
automatically and accurately count the number of individual
birds aloft along with detailed trajectory estimation such as
orientation, speed, and altitude. Such unprecedented accu-
racy in the reconstructed trajectories of individual birds may
help re-evaluate migration, locomotion and navigation the-
ories. Second, the estimated statistics could be used to cali-
brate other sensing modalities such as weather radar. Third,
low-cost digital cameras allow us to build large-scale, dis-
tributed monitoring systems that cover broad areas.

There are three main challenges in developing a robust
bird detection algorithm from videos. First, as migration
usually occurs at night, the recorded videos inevitably con-
tain substantial noise because of the low-light environment
— the birds are generally invisible to the naked eye in the
sky unless they pass in front of an illuminated object such
as the moon. We illustrate this using sample frames from
three video sequences in Figure 1. Second, depending on
the species, migrating birds fly at altitudes ranging from
several hundred feet to two miles. If the lens and camera
provide an adequate field of view, the imaged bird may span
only 1-2 pixels in a frame. This suggests that motion is the
only reliable cue for detecting a bird. Third, efficient algo-
rithms are required for large-scale deployment.

Several methods have been proposed to detect small ob-



Figure 1. Detecting migrating birds from noisy image sequences. Each row shows a set of frames from a video sequence. From top to
bottom, the sequences shown here have increasing levels of difficulty. Most of the bright spots in the images are stars. Color boxes indicate
the birds in the first and the last frame of each sequence. Because of the low SNR and small size of high-flying birds (1-2 pixels), detection
is very difficult, and often impossible, when looking at individual frames. It is only by detecting motion in the video stream that the human
perceptual system can identify and track most birds. Similarly, the detection algorithm can only detect the more difficult high-flying birds
by looking at the full video sequence and by simultaneously using stereo constraints from both cameras. Results are best viewed on a
high-resolution display with adequate zoom level.

jects in image sequences under different problem contexts.
In Automatic Target Recognition (ATR) [11, 36] the pres-
ence of the target is detected either using simple frame dif-
ferencing, filter responses, or matching against a known
template and then tracking over time. Similarly, in ridge
detection in three-dimensional volumetric data (e.g., ves-
sel extraction [28]), the ridge is often detected using a pre-
defined set of oriented filters. The common drawback of
these approaches is that the detection is mostly performed
locally. These techniques are thus not directly applicable
to our problem due to the extremely low SNRs in our case.
Recent methods address this issue by designing filter banks
to improve detection of faint signals [22, 23, 16, 17] or by
searching a large set of curves [2, 32]. However, most of
these algorithms, designed specifically for 2D images, are
computationally infeasible for 3D image data. In multi-
object tracking, several algorithms have been proposed to
track objects in 3D using stereoscopy [35, 3].

In general, the problem of target tracking can be divided
into four main categories: 1) Large objects in bright light
(e.g., tracking cars, pedestrians, faces in daylight). 2) Small
objects in bright light (e.g., meteor streaks in sky surveys,
planes with lights at night or in daylight at a great distance,
rockets/missiles that are bright in IR). 3) Large objects in
dim light (e.g., people detection and tracking at night un-
der surveillance illumination). 4) Small objects in low light
(e.g., birds flying over 1 mile high at night illuminated by
light pollution). Unfortunately, a direct application of exist-
ing techniques does not suffice for our problem (category 4).
These techniques often pose tracking and trajectory recon-
struction as independent problems of frame-level target lo-
calization and cross-frame and cross-view data-association.
The target size and SNR in our case are so low that targets
cannot be reliably detected in individual frames.

In this paper, we tackle this problem using a two-stage

(a) Bird patches (b) Background patches
Figure 3. The difficulty of detection based on local image patches.
(a) 16 cropped local image patch along a manually labeled bird
trajectory. (b) 16 cropped random background patches. These
patches are virtually indistinguishable by the naked eye.

robust model fitting approach. In contrast to prior work that
aims at local detections in each frame, we aim at detecting
using domain knowledge and global reasoning. Our funda-
mental assumption is that the migrating birds do not signif-
icantly change course and speed over short temporal spans
(e.g., 5 seconds). We can thus cast the bird detection as
finding curved 3D ridges in a spatiotemporal volume. The
core detection algorithm consists of two main stages:

(1) Geometric verification: Given a large collection of
noisy local detections, we extend the RANSAC-based 3D
line fitting algorithm by explicitly incorporating stereo vi-
sion constraints. Specifically, we fit the model to both views
jointly, which offers several advantages over a straightfor-
ward application of RANSAC independently in each view.
First, the sample subset is used to determine the full bird
model including altitude, speed, orientation, and position.
Second, we can quickly reject a large number of physically
implausible model hypotheses by checking the disparity, the
temporal alignment, and extreme speed and altitude. Third,
our model hypothesis allows us to exploit simultaneously



the detected foreground points from both view by com-
pensating the disparity. We set a loose threshold for line
fitting so that birds flying at time-varying speed or direc-
tions could also be detected. To the best of our knowledge,
while RANSAC has been extensively applied to two-view
robust correspondence problems (e.g., solving the funda-
mental matrix, homography), it is less explored in robust
model fitting (e.g., fitting 3D lines in volumetric data) by
incorporating multi-view inputs and constraints.

(2) Trajectory verification: In this step, we aim at verify-
ing the presence of the bird using guidance from geometric
verification. Given a small set of 3D line hypotheses, we
integrate the signals along the direction of the coarse 3D
trajectory while accounting for spatial uncertainties due to
time-varying speed, direction, and altitude. This is techni-
cally realized using the generalized distance transform to ef-
ficiently search over all possible spatial deformations. The
trajectory verification allows us to integrate all of the lo-
cal responses along the predicted trajectory, resulting in a
more discriminative signal for separating birds from noisy
background night sky and ranking hypothesis. This step is
critical for handling challenging low-SNR scenarios.

We make the following contributions in this paper:
1. We address a novel application domain using computer

vision algorithms. The vision-based system provides a
low-cost, accurate, and new sensing modality for mon-
itoring and studying bird migration.

2. We propose a RANSAC-based 3D line fitting algo-
rithm that explicitly incorporates stereo vision con-
straints. We demonstrate that such constraints are cru-
cial for robust model fitting in very low SNRs.

3. We account for birds flying with time-varying speeds
and directions using deformable part modeling. The
trajectory verification step allows us to gather all the
local responses along the predicted trajectory, resulting
in a discriminative signal for separating birds from the
noisy background night sky.

2. Related Work
Bird migration monitoring techniques. Scientists use
methods such as weather radar [15, 33, 19] and acoustic
sensors [31, 8, 18] to monitor migrating birds [9, 1, 13].
Radar networks can provide wide area coverage over 1000’s
of kilometers, but radar reflectivity data is difficult to in-
terpret and requires careful calibration as the data contain
many biological (birds, bats, and insects) and metorologi-
cal phenomena. Calibration often is based on a traditional
method for counting migrating birds: the use of a tele-
scope to count birds as they pass across the full moon. Al-
though moon-watching [29, 25] can provide direct visual
bird counts, it is labor-intensive, error-prone (e.g., when
multiple birds fly across), and only covers a very small por-
tion of the night sky (the moon is about 0.5 deg wide in the

sky). In contrast, our vision-based approach can accurately
detect birds, infer their orientations, speeds, altitudes, and
cover a large portion of the sky — a 5-10 degree FOV cov-
ers 250 to 1000× larger area than the moon.

Small target detection in image sequences. Detecting
and tracking small targets in infrared image sequences is
a long-standing problem in computer vision with numer-
ous military applications. These methods typically rely
on detecting the small targets locally, e.g., using frame-
differencing [12], max-mean/max-median filter [14], top-
hat transformation [5], or directional filters [4]. Local detec-
tions are then linked over time using sequential hypothesis
testing or motion models such as Kalman, particle filters, or
global optimization approaches [3, 35]. As our videos con-
tain a substantial amount of noise, local detections are not
reliable (as shown in Figure 3). Unlike previous approaches
that aim at getting correct local detections, we leverage top-
down models with global reasoning for robust detection.

The work most related to our work is that of Bal-
lerini et al. [7], which uses stereo vision to reconstruct 3D
positions of individual birds to study the collective behav-
ior of flocks of birds during the day. Our problem differs
from theirs because many birds migrate at night. The chal-
lenge thus lies in how to detect birds in very low SNRs re-
liably. We can perform detection only by doing detection
and tracking simultaneously so that detection is enabled by
additional constraints coming from tracking, and vice versa.

Ridge detection in three-dimensions. We can view our
problem as ridge detection in three-dimensional volumetric
data (i.e., spatiotemporal volume). Ridge detection tech-
niques often detect ridges using a pre-defined set of oriented
filters at multiple scales. However, the local filters are not
optimal for detecting faint signals in low SNR settings. Re-
cent efforts include designing image representation for fa-
cilitating faint signal detection [22, 23, 17] or detecting faint
curved edges in images [2, 32].

Geometric model fitting. Our work is related to classical
parametric shape fitting techniques in computer vision such
as RANSAC [21] and generalized Hough transform [6]. In
our problem context, Hough transform would need to con-
struct a 5-D parameter space, making the memory cost pro-
hibitively high. Our method uses a RANSAC-based algo-
rithm to perform line fitting in 3D point clouds (2D space
+ 1D time). The novelty lies in that we propose a sam-
ple selection approach for generating hypothetical inliers by
leveraging the stereo vision constraints.

3. Overview
Figure 4 illustrates the three main steps for detecting mi-

grating birds in flight. Given a pair of stereo videos, we



Figure 4. Overview of the bird detection algorithm. Our algorithm consists of three main modules: (a) Foreground detection: using
statistical background modeling for moving object detection. (b) Geometric verification: RANSAC-based line fitting with stereo vision
constraints. The three red boxes indicate the selected hypothetical inliers. This strategy naturally handles disparity estimation and offer
computational efficiency by rejecting a large number of physically implausible configurations. (c) Trajectory verification: with the coarse
3D line fitting, we integrate weak signals along the predicted trajectory for both videos to verify if there is a bird. To account for birds
flying at time-varying speed and directions, we interpret the motion compensated local image patch as a “part” of an object and use the
generalized distance transform [20] for handling such spatial uncertainty. We detect the birds by thresholding the final response map.

first use classical statistical background modeling to detect
foreground candidates (Section 4.3). As shown in Figure 4,
the substantial number of outliers obscure the hidden curved
line. Second, we use a RANSAC-based 3D line fitting al-
gorithm to generate and verify hypotheses (Section 4.4).
We propose a sampling strategy that explicitly incorporates
stereo vision constraints. Such constraints are powerful be-
cause it allows us to reject a large portion of physically im-
plausible configurations, and thereby offers computational
efficiency when a large number of random samples are re-
quired due to the unusually high outliers ratio. We use a
coarse threshold to maintain high recall in detection. Third,
we use trajectory verification (Section 4.4) to integrate the
faint signals along the predicted trajectory from geometric
verification while accounting for spatial uncertainties. Un-
like RANSAC-based detection methods that use sparse de-
tection data (i.e., 3D point clouds), we exploit dense infor-
mation across the spatiotemporal volume. Through gath-
ering local evidence across a long temporal span, we get
a clean and discriminative signal that allows us to separate
birds from the noisy background with high precision.

4. Stereo-based Bird Detection

In this section, we describe the proposed method in de-
tail. We first present the local bird trajectory model by as-
suming a weak perspective camera model. We then briefly
describe pre-processing steps for rectifying videos of the
night sky by registering stars, followed by the core detec-
tion algorithm: (1) foreground detection, (2) geometry ver-
ification, and (3) trajectory verification.

4.1. Bird trajectory modeling

To model the coarse bird trajectory in a video, we make
the following two assumptions. First, we assume affine
camera models because the migrating birds in flight are rea-
sonably far away from the camera (with altitudes ranging

(a) Correspondence (b) Stereo rectification
Figure 5. Stereo image rectification using star registration. (a) Star
detection from a video frame, (b) Correspondence, (c) Stereo im-
age rectification.

from several hundred feet to two miles) compared with the
size of a bird. Second, we assume that birds fly at relatively
constant speed, orientation, and altitude during a short time-
frame (e.g., 5 seconds).

Denote the three-dimensional position in space of a bird
at time t as Pt = [Xt ,Yt ,Zt ]

>, we can express the imaged
position of the bird pt = [xt ,yt ]

> as pt = M[P>t ,1]>, where
M ∈ R2×4 is the camera projection matrix. Using the con-
stant speed, orientation, and altitute assumptions, we sim-
plify the 3D position Pt as Pt = P0 + t[Vx,Vy,0]>, where P0
indicates the position at time t = 0, and Vx,Vy are the physi-
cal speeds in space. We can write down the imaged position
pt = p0 + t[vx,vy]

>, where vx,vy are the speed in the image
space. We can thus view this idealized bird trajectory as a
thin, straight ridge in the spatio-temporal video cube.

4.2. Stereo image rectification

Our system uses stereo vision to determine the altitude of
a flying bird from correspondence. To simplify the 2D cor-
respondence search to 1D, we first rectify the images from
two views so that all epipolar lines are parallel to the hori-
zontal axis. We follow the standard procedure for stereo im-
age rectification: (1) finding a set of correspondences in the
stereo pair of videos, (2) estimate the fundamental matrix



[37], and (3) compute the rectifying matrices using [30].
For night sky images, we cannot apply the commonly

used local interest point and feature descriptor matching ap-
proaches to establish correspondences. Fortunately, mother
nature provides stars as markers. The two cameras are setup
to capture roughly the same patch of the sky, so we exploit
the imaged star positions for image registration. For each
video, we first apply a moving average filter over the tem-
poral axis to suppress the background noise. We then apply
a single-scale 2D Laplacian of the Gaussian (LoG) to locate
bright blob structures. After thresholding the LoG filter re-
sponse and non-maximum suppression, we obtain a set of
star positions (i.e., 2D point cloud) for each video.

With the detected star positions, we use the Iterative
Closest Point (ICP) algorithm [10] with an affine motion
model to find the transformation and inlier matches. How-
ever, as the stars are infinitely far away from the camera,
the correspondences from stars gives rise to a degenerated
case in fundamental matrix estimation. To eliminate this
degeneracy, we manually label the position of a flying bird
in several frames. We only need to do this manual labeling
once because we assume the cameras remain fixed through
the videos. It is possible to use the proposed automatic
flying bird detection to perform self-calibration (e.g., for
cases where the stereo camera setup cannot remain fixed
over time), but we leave that for future work.

We show in Figure 5(a) the detected starts in two views
(Red and Green) the correspondence from ICP in Blue line.
Figure 5(b) shows the rectified positions for the stars and the
manually labeled bird. The stars from two views align ac-
curately (as they are infinitely far) and the labeled birds fall
on horizontal lines. Note that the results shown here contain
star positions over 20 mins. The purpose of using this “star
trail” is to provide additional accuracy for registration.

4.3. Foreground detection

In this step, we look for local evidences for detecting fly-
ing birds. As imaged flying birds appear brighter than the
surrounding background (illuminated from below by light
pollution), the imaged bird trajectory can be seen as an in-
tensity ridge in the video sequence. The problem of bird
detection could be naturally cast as a ridge detection task in
a 3D spatiotemporal video cube. Ridge (and valley) detec-
tion have been extensively studied in computer vision and
image analysis with typical applications for detecting road
in aerial images and for detecting blood vessels in 2D reti-
nal or 3D magnetic resonance images. These methods often
rely on designing filters that respond to locally linear inten-
sity features followed by linking processes. However, these
methods cannot directly be applied to our problem. As our
videos have very low SNR, achieving accurate local detec-
tion would require evaluating a large collection of oriented
filters with large kernel sizes, and thus would not scale well

Figure 6. Foreground detection. (a) Sample foreground detection
plots. Flying birds in a video appear like curved lines in the spatio-
temporal volume. In this scattered plot, there are three curved
lines. (b) Projection of foreground detection onto X-Y, X-T, and
Y-T planes.

with large-scale video datasets.
For efficiency, we rely on top-down knowledge and

global reasoning for detecting dim flying birds and resort
to a simple statistical background modeling approach for
local foreground pixel detection. Specifically, we build a
per-pixel Gaussian model and compute the response of a
pixel by measuring the intensity deviation from the learned
model. We detect foreground pixels by thresholding the lo-
cal responses. We estimate the parameters of the per-pixel
Gaussian model (mean and variance) online using a pre-
defined learning rate. Note that while other more sophisti-
cated background modeling and subtraction techniques are
available, we did not observe substantial improvement. Fig-
ure 6 shows the three-dimensional (X-Y-T) scattered plot
of the foreground detection on West and East camera on a
video with a flock of three birds. Figure 6(b) shows the
projections of the 3D point cloud onto X-Y, Y-T, and X-T
planes, respectively. We could visually spot the three fly-
ing birds. The challenge, however, lies in how to handle the
high outliers ratio.

4.4. Geometric verification

Our coarse bird model (i.e., a straight line in a 3D video
cube) consists of 5 parameters, including an initial spatial
position in the image plane (2D), constant motion vectors
(2D), and disparity from stereo vision (1D). The goal of
geometric verification is to fit coarse bird models to the
3D point clouds with a significant portion of outliers from
the foreground detection step. The most widely used ro-
bust fitting algorithms are (1) Generalized Hough Trans-
form (GHT) and (2) RANSAC. We choose to perform geo-
metric verification using RANSAC because of the demand-
ing memory complexity in GHT for estimating 5D models.

A straightforward approach would be using RANSAC-
based 3D line fitting method independently for each video
and then solve the disparity by matching fitted lines in two
views after the models in each video are found. However,
such an approach does not exploit the available physical
constraints presented in the stereo videos. For example, the



two corresponding 3D lines in the stereo pair should be par-
allel, having the same y-coordinate at all frames, and with
positive disparity values. To incorporate these constraints,
we propose a stereo-based 3D line fitting algorithm. Specif-
ically, of the detected foreground points from the stereo pair,
we select random subsets of three detected points to esti-
mate the bird model, where two points are drawn from one
video, and one point is drawn from the other video.

Figure 4(b) illustrates the three-point hypothetical inlier.
The proposed three-point subset sampling strategy offers
several advantages. First, we can fully determine the 5D
bird model using the selected three points. Second, we can
quickly reject a large collection of model hypotheses that
are not physically plausible by checking the disparity and
temporal alignment. Third, as we also have disparity in
the estimated model, we can simultaneously exploit the de-
tected foreground points from both videos by compensating
for the disparity.

We follow the standard RANSAC algorithm and count
the number of inliers (number of foreground points fall in-
side the 3D tube). We then apply the J-linkage clustering al-
gorithm [34] to group repeatedly sampled hypothesis. Once
we have the grouped model hypothesis, we perform least
squares fitting using all the inlier foreground points from
both videos to compute a more reliable bird model estima-
tion. We solve this refinement step iteratively. Given an
estimated disparity, we can solve the orientation using Sin-
gular Value Decomposition. In turn, we fix the orientation
and update the disparity using least-square fitting.

4.5. Trajectory verification

While geometric verification can efficiently detect fly-
ing birds by exploiting the stereo vision constraints, we ob-
serve a high false positive rate due to inevitable noisy fore-
ground detections. We address this issue by integrating sig-
nals along the bird’s trajectory. Unlike geometric verifica-
tion that fit models to sparse foreground candidates, trajec-
tory verification exploits dense information across the entire
video cube.

One way to achieve this is to use the corresponding
matched filter that computes the average local response
along its trajectory. However, the actual bird trajectory may
not be a perfect 3D straight line in the video because the
bird may not fly along the same direction or maintain con-
stant speed and altitude. Simply using the estimated coarse
bird model to filter the videos is clearly sub-optimal as spa-
tial misalignments lead to blurry accumulated response.

We address this problem by allowing the bird trajectory
to be “deformed” as illustrated in Figure 7. We interpret the
bird response at the predict position using the coarse model
at a frame as the local response for a “part”. The detection
of the bird can then be cast as the detection of a deformable
part model. Specifically, we evaluate the score of a small

Figure 7. Trajectory verification. Given a 3D line model, we gather
the spatial patches along the coarse trajectory from T = 1 (when
the bird enters the frame) to T = N (when the bird leaves the
frame). These local responses are noisy and misalignment due
to time-varying speed and directions. We transform the responses
to account for spatial uncertainty.

window (e.g., 15 × 15) as

score(x,y)=
Nt

∑
t=1

max
dx,dy

[
Rt (xt +dx,yt +dy)−α

(
dx2 +dy2)] ,

where Rt is the response map for foreground object, (xt ,yt)
is the predicted position at time t using the hypothesized
3D line from the geometric verification step, and α is the
weights for allowing different levels of spatial deformation.
As we also have the disparity estimation, we aggregate the
scores from two views. We use the Generalized Distance
Transform [20] to efficiently search over all possible de-
formations through time. These transformed responses can
then be added together and ranked for verification.

5. Experimental Results
5.1. Implementation details

In foreground detection, we classify a pixel as a fore-
ground if its intensity is greater than the mean background
intensity by 2.75 standard deviations. In geometric veri-
fication, we keep model hypotheses with at least 5 inliers
and reject the rest. In trajectory verification, we use 15×15
windows and set the spatial deformation parameter α = 0.5.
We fix these parameters throughout all experiments.

We process a video in a mini-batch mode, by dividing a
long video sequence into a set of overlapping five-second
sequences with a one-second interval. We detect birds in
each video clip and cluster these detections in the nearby
clips to generate our final results. In a video with frame rate
30 fps, we have in total 150 frames. For processing one



Table 1. Quantitative performance
Method Precision Recall

Geometric verification only 6.08% 83.10%
Geometric and Trajectory verification 97.30% 83.72%

5 second video clip, our MATLAB implementation takes 7
seconds on a PC with 1.9GHz and 8 GB memory. The data
and source code are available on the project website 1.

5.2. Evaluation on real videos

To evaluate the proposed method, we have developed a
prototype stereo video system to capture videos of migrat-
ing birds at night. In what follows, we present the data col-
lection steps and our results on real videos.

Data collection We use two low-light near-IR mono in-
dustrial VGA cameras to capture the stereo video. We chose
the cameras because of their superior low-light sensitivity
(10k–100k×more sensitive than consumer video cameras).
The cameras have a spatial resolution of 640× 480 pixels.
We use a pair of 50 mm lenses and set the two cameras on
tripods facing the sky with a two-meter baseline. We cap-
tured hours of stereo video on different nights and selected
a 40-minutes long video from Spring migration for testing.

Quantitative results To evaluate performance, we devel-
oped a Graphical User Interface to allow experts to anno-
tate the birds flying across video frames. In total, 86 birds
were found in the video. A majority of the birds head North
+−20 degrees. Among the 86 annotated birds, our method
detects 74 of them, with two false positives and 12 missed
detections. In Table 1, we show the quantitative perfor-
mance of our algorithm. When using geometric verification
only, we achieve 83.10% in recall. However, precision is
very poor, with only 6.08%. Coupled with trajectory ver-
ification, precision rises above 95% with 83% recall. The
automatic system detects 9 birds missed by the experts.

We further evaluate the relative contributions from (1)
fusing information from two views and (2) using the de-
formable part model to account for the inevitable spatial un-
certainty when using real videos of birds migrating at night.
Specifically, we report the precision and recall values using
the four variants. One View: use only the video from the
West camera. Two Views: use both West and East videos.
Without deformation: did not transform the scores in each
local image patch. With deformation: use the generalized
distance transform to allow spatial uncertainty.

To make the contribution of each term clear, Figure 8
shows the precision and recall of these four variants using a
version of the system that does no post-processing to reduce

1https://sites.google.com/site/jbhuang0604

Figure 8. Precision and recall of four variants of the proposed tra-
jectory verification approach on real videos.

false detections. In cases of integrating signals along the es-
timated trajectory (from geometric verification) in one view,
both the precision and recall improve when we account for
the spatial deformation. When using two views without ac-
counting for the spatial deformation, we found that the re-
call drops significantly. We attribute the performance degra-
dation to the imperfect disparity estimation between the two
views. Integrating scores from two views without taking the
spatial uncertainty into account, the results suggest that the
algorithm may not be able to accumulate the weak signals
due to the misalignment, and, therefore, fails to detect dim
birds. Overall, the best performance is achieved by taking
advantage of the stereo constraint while also allowing for
deformation to account for spatial uncertainty.

Qualitative results In Figure 9, we show detection results
in a variety of scenarios to demonstrate the effectiveness
of the proposed approach. For example, our method can
detect birds flying at altitudes ranging from 200 meters to
more than 2,500 meters as well as at different directions
and speeds. We can also handle multiple birds flying across
the video frame. Unlike existing techniques that can only
detect the presence of the birds, the direct visual analysis
provides detailed measurements about the trajectory of in-
dividual birds. We believe such information may provide
valuable insights about the behavior of migrating flocks.

5.3. Discussion

Limitations One potential problem and limitation in eval-
uating the performance on real videos is that the groundtruth
annotations are not available, and the human visual sys-
tem may not be able to detect very dim, high-flying birds
from the video. In the future, we plan to investigate a
multi-modal solution (e.g., vision-based, acoustics-based,
and weather radar) toward this problem. Figure 10 shows
a few of the limitations of our method. First, as our fore-
ground detection is based on a statistical background mod-

https://sites.google.com/site/jbhuang0604


Figure 9. Detection results on real videos. Our system can handle diverse scenarios, e.g., single, multiple birds, birds flying parallel with
each other, or birds flying at very different altitudes.

(a) FP (cloud) (b) FP (noises) (c) TN (insect)
Figure 10. Interesting cases: (a): a false positive detection due to a
moving cloud. (b) a false positive detection due to noise. (c) a true
negative — the moving blob is an insect. Our system uses the es-
timated altitude to avoid confusion with high-flying objects (e.g.,
above 3000 meters) such as satellites or planes and low-flying ob-
jects (e.g., under 50 meters) such as insects.

eling approach, we are not able to handle dynamic back-
ground or sudden illumination changes. For example, in
Figure 10(a), our method falsely detect the moving cloud as
a bird. Second, even with the use of stereo-based constraints
for rejecting physically implausible detections (e.g., Fig-
ure 10(b)), our method may sometimes produce false posi-
tives due to the substantial noise in the video. One potential
solution is to use three or more cameras covering the same
patch of the night sky. Our framework could be extended to
multi-camera settings to further improve the detection per-
formance. Third, in Figure 10(c) we show that our method
is robust to other types of flying objects. The altitude es-
timation provides important cues for separating migrating
birds from high-flying objects (satellites or airplanes) and
low-flying objects (insects).

6. Conclusions
We presented the first stereo-vision-based approach for

monitoring migrating birds at night. From a pair of stereo
videos, we perform stereo image rectification by detecting

and registering stars. The core bird detection algorithm then
consists of three main steps. First, we use a statistical back-
ground modeling for foreground detection for each video.
This produces a noisy three-dimensional point cloud. Sec-
ond, we propose a novel RANSAC-based 3D line fitting
that explicitly takes into account stereo vision constraints.
Third, we apply deformable part modeling for handling the
spatial uncertainty of birds due to time-varying speed and
orientation. Through evaluation on real videos captured
from a physical setup, we demonstrate the effectiveness of
the proposed method. We believe the new capabilities will
make significant impact on computational ecology.

While our work address a particular application, the ap-
proach for detecting and tracking multiple small targets in
3D volumic data with very low SNR using multiple cameras
is general and potentially can be applied to many other im-
portant problems. In this work, we show how to leverage the
underlying physical constraints and domain knowledge to
achieve physically plausible detection that otherwise would
not be feasible due to the high level of noise.
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