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Bird migration occurs at the largest of global scales, but monitoring such movements can be chal-

lenging. In the US there is an operational network of weather radars providing freely accessible 

data for monitoring meteorological phenomena in the atmosphere. Individual radars are sensitive 

enough to detect birds, and can provide insight into migratory behaviors of birds at scales that are 

not possible using other sensors. Archived data from the WSR-88D network of US weather ra-

dars hold valuable and detailed information about the continent-scale migratory movements of 

birds over the last 20 years. However, significant technical challenges must be overcome to un-

derstand this information and harness its potential for science and conservation. We describe 

recent work on an AI system to quantify bird migration using radar data, which is part of the larger 

BirdCast project to model and forecast bird migration at large scales using radar, weather, and 

citizen science data. 

Introduction 

Ecological processes that occur at global scales are among the most impressive natural phe-

nomena on Earth; they link environments across the globe and capture the imagination of ob-

servers. For example, billions of North American birds, representing more than 400 species, mi-

grate annually, often thousands of miles, frequently under the cover of darkness, between breed-

ing and non-breeding areas. There is an urgent need to understand global processes in order to 

mitigate threats from anthropogenic change. For example, man-made collision hazards are killing 

hundreds of millions of birds annually (Crawford et al. 2001; Longcore et al. 2008), and direct and 

indirect habitat alteration is reducing stopover habitats vital for birds to refuel during migration 

(Bonter et al. 2009; Veltri and Klem 2005). Our ability to mitigate this anthropogenic mortality re-

lies on a detailed understanding of the magnitude and composition of migration in time and space 

so we can take actions such as protecting critical stopover sites and turning off wind-turbines and 

lights on man-made structures at key places and times during migration. 

However, because of their scale and complexity, global phenomena are also very difficult to 

study. Bird migration is one of the most complex and dynamic natural systems on the planet and 

it presents immense challenges to observation and measurement. Despite extensive research 

(e.g., for reviews see Deppe and Rotenberry 2008, and Moore et al., 2005) we do not have the 

necessary information to accurately model and predict continent-wide migration. Our knowledge 

of migration is largely based on studies from specific locations (Able 1999; Veltri and Klem 2008; 

Packett and Dunning 2009) or studies that mark or track individual birds with leg-bands or track-

ing devices (Francis 1995; Schaub et al. 2004; Tøttrup et al. 2006; Newton 2008). Despite tech-

nological advances, these approaches are costly and provide detailed movement information for 

only a small number of birds. New data sources and new approaches are needed to understand 

migration at the largest of scales. 



 

Figure 1: Mosaic image of the continental US network of WSR-88D stations 
depicting a heavy migration event on night of 10 September 2010. Precipita-
tion appears as contiguous regions with blocky and irregular shapes. Birds 

appear as more uniform stippled patterns of primarily light and medium 
grays surrounding individual radar stations. Bird migration is evident across 
the entire continent, particularly across the central and eastern US. Darker 

stippled areas represent bird densities approaching 2,000 birds km
3
. On this 

night, many tens of millions of birds were aloft over the US. Note, also, that 
areas with the uniform stippling do not necessarily represent areas where no 
birds are present, rather these are places either without radar coverage or 

where the radar beam is sufficiently far and high from the radar so as not to 
provide useful information 

 

A Way Forward: Computational Sustainability 

Three approaches in the new field of Computational Sustainability enable the study global ecolog-

ical phenomena: improved sensors, citizen science, and repurposing existing sources. Each of 

these approaches requires advances in AI, automated reasoning, and machine learning.  

The first new approach is improved sensors. Computer scientists and engineers, in collaboration 

with domain scientists, are developing novel sensors and sensor platforms that can collect much 

more data than in the past. Examples include deep ocean gliders (Eriksen et al. 2001; Sherman 

et al. 2001) that can collect data throughout the oceans, autonomous aerial vehicles that can col-

lect high-resolution data on ecosystems (Carey 2012), and environmental sensor networks (NE-

ON 2012). The deployment of novel sensors (particularly via autonomous robots) requires ad-

vances in robot navigation and decision-making, as well as the ability to fit scientific models to the 

resulting data. Unfortunately, for bird migration, existing sensors that are small enough and light 

enough to be carried by birds can be placed on only a tiny fraction of the billions of individual 

birds that are migrating.  

The second approach is citizen science. For example, the eBird project is a web-based platform 

that collects observations from volunteer bird watchers and presently archives over 140,000,000 

observations 

from every 

country in the 

world. By ap-

plying novel 

machine learn-

ing techniques 

to these data, 

our collabora-

tors have been 

able to con-

struct high-

resolution 

maps of bird 

habitat 

throughout the 

United States 

and broader 

parts of the 

Americas (Fink 

et al. 2010; 

Fink et al. 

2013). Analyz-

ing citizen sci-

ence data re-

quires ad-

vances to 

overcome 

challenges of 

data quality 

and unevenly-



distributed data, since volunteers may have vastly different levels of expertise (Kelling et al. 2012) 

and they choose when and where to make observations. 

The third approach is to repurpose existing data sources so that they can be applied to address 

ecological problems. The work described in this paper is a case study of this approach. Below, 

we describe the challenges of analyzing weather radar data to extract information on bird density 

and migration velocity.  

Our Case Study: Reconstructing Velocities of Migrating Birds 

The National Weather Service operates the WSR-88D (Weather Surveillance Radar-1988 Dop-

pler) network of 159 radar stations in the United States and its territories. The network covers 

nearly the entire US and was designed to detect and study weather phenomena such as precipi-

tation and severe storms (Crum and Alberty 1993; Doviak and Zrnic 1993).  However, it turns out 

that radar systems also detect birds, bats, and insects in the atmosphere (Lack and Varley 1945), 

which makes WSR-88D an ideal source for information about movements of birds (Figure 1). 

Consequently, a small community of researchers has been pursuing the idea of using weather 

radar as a tool for observing the presence and movement of migrating birds (Gauthreaux and 

Belser 2003; Dokter et al. 2011). Fortunately, the WSR-88D data are archived and available from 

the early 1990s to present. However, despite the fact that several studies have examined WSR-

88D data (e.g. Gauthreaux, Belser, and Van Blaricom 2003; Buler et al. 2012), these analyses 

were limited in scope, either to a small region of space (e.g. a single or a few station/s) or to short 

time periods (e.g. a few weeks out of a season). If it is possible to develop the necessary algo-

rithms to fully automate radar data analysis, then this lengthy time series could enable us to study 

bird migration over a period of more than 20 years, which could be invaluable for building a scien-

tific understanding of bird migration. 

A key challenge limiting the scope of previous studies is that WSR-88D data are difficult to inter-

pret. Radar signatures of birds are quite similar to those of bats, insects, meteorological phenom-

ena (e.g., precipitation), and even airborne dust and pollen. Consequently, a highly trained expert 

must review and interpret these data (Gauthreaux et al. 2003; Buler and Diehl 2009). This is not 

feasible unless the data used are significantly restricted in scope, either spatially or temporally. 

Assuming a single radar scans its surrounding atmosphere every five to ten minutes, we estimate 

there are well over 100 million archived volume scans from single radar sites, and a single night 

during the peak of bird migration will produce about 15,000 scans nationwide. If we can develop 

AI tools to automate the interpretation steps, this vast store of data could enable important ad-

vances in our understanding of many phenomena, particularly bird migration. For example, how 

many birds migrate on a given night? How does the total density of migrants change over time 

across a migration season or across years, or even across the continent during the last two dec-

ades? In what directions are birds moving and at what speed? With what local and regional con-

ditions do large movements correlate? 

In this article, we describe ongoing work to develop an AI system that automatically interprets 

radar data and extracts quantitative high-level information about migration. A primary goal of the 

article is to provide an accessible overview of a recent technical paper that introduced a new 

probabilistic model and approximate inference algorithm for reconstructing the velocities of mi-

grating birds from the partial information collected by Doppler radar (Sheldon et al. 2013). An ac-

curate algorithm to estimate the velocities of birds and other targets detected by radar is critical to 

unlocking the potential of the data. Velocity information is important for understanding the biology 

of bird migration. In addition, there is growing evidence that the structure of the velocity field is a 

key to discriminating between birds, which fly under their own power, and other targets such as 



(a) 

 

(b) 

Figure 2: Illustration of three-dimensional nature of a radar sweep: (a) the beam rises with 
distance from the radar station, and thus traces out an approximately conical two-dimensional 
surface; (b) a conventional plan view (top down image) of the same sweep. Black lines in (a) 

and (b) illustrate the distance-height relationship: at 100km, the beam center height is approx-
imately 1.5km; density of migrating birds drops off substantially after this. 

precipitation, insects, and dust, that are primarily carried by the wind (Gauthreaux et al. 2003; 

Dokter et al. 2011). 

The article also highlights key themes that relate to Computational Sustainability and AI. One 

theme is the promise of data mining and machine learning techniques for interpreting large eco-

logical data sets such as those collected by sensor networks or citizen scientists (Kelling et al. 

2012). Because the availability of large data sets in ecology is relatively recent, they hold great 

promise for scientific discovery, and their analysis raises unique and unsolved technical challeng-

es (Kelling et al. 2012; Dietterich et al. 2012). Close collaborations between domain scientists and 

computer scientists are a fertile environment for innovation. Another theme is the power of joint 



probabilistic inference over a purely sequential approach in AI systems that consist of a pipeline 

of processing steps, which is discussed in Section 4 after providing background on the velocity 

inference problem and existing models from the weather community. 

Radar Background and Problem Statement 

Scanning Strategy 

Each radar in the WSR-88D network collects data by conducting a sequence of volume scans, 

which complete every six to ten minutes. Each volume scan consists of a sequence of sweeps 

during which the antenna rotates 360 degrees around a vertical axis while keeping its elevation 

angle fixed (Figure 2). The result of each sweep is a set of raster data products summarizing the 

radar signal returned from targets within discrete pulse volumes, which are the portions of the 

atmosphere sensed at a particular antenna position and range from the radar. The coordinates 

        of each pulse volume are measured in a three-dimensional polar coordinate system: 

•   is the distance in meters from the antenna, 

•   is the azimuth, which is the angle in the horizontal plane between the antenna direction 

and a fixed reference direction (typically degrees clockwise from due north), 

•   is the elevation angle, which is the angle between the antenna direction and its projection 

onto the horizontal plane. 

Figure 2(a) illustrates an important aspect of the radar’s volume scanning strategy. The upward 

angle of the beam and the earth’s curvature cause the beam to sample higher points in the at-

mosphere as it travels away from the radar, which results in a distance–height relationship that is 

important to remember when interpreting conventional “top-down” radar images like the one in 

Figure 2 (b). In this example, the beam encounters migrating birds whose density drops off sharp-

ly above altitudes of about 1.5 km; thus, the radar can only “see” the birds out to distances of 

about 150 km, after which the beam is too high. This geometry explains the appearance of the 

bird echoes in the national composite radar map of Figure 1. Each circular region represents the 

birds detectable from a single radar station, leading to an overall picture of migration activity that 

appears localized and uneven. However, a more accurate interpretation is that a fairly even blan-

ket of migrating birds covers much of the US. 

For this article, we will illustrate radar concepts using images from the lowest sweep (   0.5 de-

grees), as shown in Figure 2. However, the radar conducts sweeps at a sequence of increasing 

elevations, and thus samples the three-dimensional volume surrounding the station using con-

centric cones like this one in Figure 2 (a). Our algorithms use data from all sweeps. 

Radial Velocity 

The two primary data products collected from each sweep are reflectivity, a measure of the total 

amount of power returned to the radar from targets within each pulse volume, and radial velocity, 

the average speed at which the targets in the pulse volume are approaching or departing the ra-

dar, which is measured using the Doppler shift of the radar signal. While reflectivity is the meas-

urement most familiar from weather reports, because it indicates the amount of precipitation (or 

birds) in the atmosphere, we are primarily concerned with radial velocity in this article.  

Figure 3 illustrates the interpretation of WSR-88D radial velocity data. For any given pulse vol-

ume, radial velocity tells us the component of target velocity in the direction of the radar beam, 



and we have no additional information about the component orthogonal to the radar beam. How-

ever, the overall pattern of the sweep often provides clear evidence about the true target veloci-

ties. In this example, targets to the NE of the radar station have negative radial velocities (dark 

colors), which means they are approaching the radar, and targets to the SW of the radar station 

have positive radial velocities (light colors), which means they are departing the radar station. We 

can infer that the targets (in this case, predominantly migrating birds) are moving uniformly in a 

SW direction, as shown in panel (c). The spiral pattern in the velocity image is due to changes in 

target velocity with height, which are partly driven by changes in wind direction. In this case, 

winds at lower elevations are from the north, whereas those at higher elevations have more of an 

easterly component, which explains why the boundary between positive and negative radial ve-

locities rotates clockwise with distance from the radar. 

Problem Statement 

Our goal is to infer the true velocities of migrating birds at different elevations from WSR-88D ra-

dial velocity data. Specifically, the final output of our algorithms will be elevational profiles like the 

ones shown in Figure 4 that show the migration direction and speed in each elevation bin. 

In the following sections, we will introduce the basic modeling approaches from the weather 

community for solving this problem, and highlight a key difficulty that arises due to the phenome-

non of aliasing in the radial velocity data. We then propose a modification to the model that is 

conceptually simple but leads to a much more difficult inference problem, and then we develop an 

inference algorithm using approximate inference techniques proposed recently in the AI and ma-

chine learning communities. 

Existing Models and the Problem of Aliasing 

How can one reconstruct the true direction and speed of migrating birds from the partial infor-

mation contained in radial velocity data? Our interpretation in Figure 3 relied on the overall pat-

tern of the radial velocity image combined with an implicit assumption that targets (in this case, 

birds) behaved in a reasonably consistent way, and thus had similar velocities, throughout the 

       

(a)                                              (b)                                                    (c) 

Figure 3: Illustration of radial velocity concepts: (a) the radial velocity is the component of target 
velocity in the direction of the radar beam, (b) a radial velocity image from the KBGM station in 
Binghamton, NY during a heavy period of bird migration on 11 September 2010, (c) from the 
overall pattern of the velocity image, we infer targets are moving uniformly in a SW direction. 



region covered by the sweep. This is a basic assumption made by radar-based wind profiling al-

gorithms, and it will also be the foundation for our algorithms.  

Velocity Model. Our starting point is the uniform velocity model from the weather community 

(Doviak and Zrnic 1993), which assumes that target velocity varies only with elevation, so it is 

constant within a given elevation range. Suppose the true unknown velocity components in the   

and   directions of the horizontal plane are   and  .
1
 Then, for a fixed elevation angle  , it is a 

simple exercise in trigonometry to determine the radial velocity at a given antenna angle   in the 

horizontal plane. Figure 5 illustrates the situation.  

The radial velocity      predicted by this model is the projection of the unknown velocity vector 

onto the beam direction, which is (Doviak and Zrnic 1993; Dokter et al. 2011): 

                          

                                                        
1
We will assume the velocity in the vertical direction is negligible, though the models can easily 

be extended to include this as well. 

 

Figure 5: The goal of this work is to produce vertical velocity profiles (right), which show target 
speed and elevation at different heights. Information about velocities at different heights can 
be obtained by analyzing data at different distances from the radar station, and from sweeps 

conducted at different elevation angles (not shown). 

 

   

Figure 4. Uniform velocity model. Top: small arrows are target velocity vectors; all targets at the 
same elevation have a common velocity (u; v). Large arrow perpendicular to target velocity 
indicates beam direction in the horizontal plane. Radial velocity is the projection of the target 
velocity onto the beam direction. Bottom: the uniform velocity model predicts that radial velocity 

will be a sinusoidal function of   (solid line), which is often an excellent fit to real data. Black 
points show radial velocity measurements from the sweep shown in Figure 3 at a fixed range of 
25km.  



Two things are notable about this model. First, it describes a sinusoidal function of  .
2
 As seen in 

Figure 5, real data is often an excellent fit with this model, but exhibits some noise due to fine-

scale unmodeled variability in the velocity field and measurement noise. Thus, when fitting the 

model it is natural to model the true radial velocity      as a Gaussian random variable with 

mean     : 

                 

The second notable feature of the model is that      is a linear function of the unknown velocity 

components   and  , so the maximum-likelihood parameters can be recovered by a simple least 

squares fit. Variants of this fitting approach are referred to either as velocity-azimuthal display 

(VAD) algorithms or velocity volume profiling (VVP) (Doviak and Zrnic 1993). 

Aliasing. The uniform velocity model is an excellent model for our purposes and it is easy to fit. 

There would be little more to say if not for the problem of aliasing. Aliasing occurs when the target 

radial velocities exceed a value      called the Nyquist velocity. Due to the sampling strategy for 

measuring the Doppler shift of the returned signal, WSR-88D radars can only resolve radial ve-

locities unambiguously if they are smaller than     . When the true radial velocity exceeds this 

value, the measurement will “wrap around”. For example, the Nyquist velocity is      

           in one of the common clear-air operating modes that is used during conditions favor-

able for bird migration. For an outbound target whose true radial velocity is        

          , the measurement will instead read as                    , so it appears in-

stead as a fast inbound target. More precisely, any radial velocity value   that exceeds the 

Nyquist velocity is aliased
3
 by shifting it by an integer multiple of       to a new value   that falls 

in the interval             , which we will call the unambiguous interval. Thus, an infinite number 

of different radial velocities can lead to the same measurement: these are called aliases. 

                                                        
2
The phase and amplitude are determined by the unknown velocity parameters   and  . 

3
The aliasing operation of a value   is mathematically equivalent to the modulus operation 

  mod       in modular arithmetic, except it follows the convention that the result lies in the inter-
val              instead of          . 

   

                     (a)                                                                                   (b)       

Figure 6: Aliasing. (a) radial velocity data with clear aliasing (raw data from dealiased scan 
shown in Figure 3). (b) aliased radial velocity data (black marks) vs. azimuth at fixed range of 

25 km (corresponds to black circle in left image). Horizontal gray lines mark the Nyquist velocity 
±Vmax. The solid black curve is the least squares fit using the uniform velocity model, which is 

unable to fit the aliased data well. 

 



In fact, aliasing errors were present and had to be corrected in the velocity data for the example 

we interpreted in Figure 3. The raw data for the same sweep are shown in Figure 6 (top). Aliasing 

is clearly evident: the fastest moving inbound targets to the NE of the radar are erroneously 

measured as having outbound velocities (light), while the fastest outbound targets to the SW are 

erroneously measured as having inbound velocities (dark). Even more important to our modeling 

goals is the fact that the uniform velocity model completely breaks under aliasing. Figure 6 (bot-

tom) shows the effect of aliasing on the noisy sine curve of the uniform velocity model: the curve 

now wraps around at      . A least squares fit of the uniform velocity model directly to this data 

will give very poor results (solid curve in the figure). For this reason, most approaches to velocity 

profiling assume that the data has already been properly dealiased. 

A Joint Model for Velocity Profiling with Aliased Data 

How can we proceed in the presence of aliasing errors? While most previous approaches attempt 

to fix the data by dealiasing it before fitting the velocity parameters, it is much more desirable to 

fix the model instead, so that it can jointly reason about each source of missing information in this 

problem: (1) the unobserved component of radial velocity, (2) ambiguity due to aliasing, and (3) 

noise due to fine-scale variability in the velocity field. 

The argument in favor of a joint model illustrates a general principle for AI systems that perform a 

sequence of processing steps where the output from one step feeds into the next: when possible, 

joint inference over the entire pipeline is preferable to solving each of the problems separately in 

a feed-forward fashion, if one can meet the more challenging computational demands of joint in-

ference (Poon and Domingos 2007). If the tasks are treated separately, errors in earlier stages 

propagate and compound in later ones—there is no opportunity to correct dealiasing errors during 

velocity profiling. Joint inference not only avoids this problem, but it also leverages useful higher-

level information from later stages to guide the decisions made in earlier stages. In our case, the 

velocity model provides excellent advice about the correct interpretation of aliased data: knowing 

that the data in Figure 6 should follow a noisy sine curve, it is visually obvious where the sine 

curve crosses an aliasing boundary and how the data should be adjusted to fix this. This is much 

more powerful than the weaker spatial continuity assumptions used by many existing dealiasing 

algorithms. Other dealiasing algorithms use separate wind measurements to provide information 

about the expected velocities—this can be viewed as a surrogate for jointly reasoning about alias-

ing and velocity, but the major downside is limited availability of separate wind measurements. 

Fixing the Uniform Velocity Model 

Empirically, the uniform velocity model performs very poorly when aliasing errors are present. But 

what goes wrong conceptually? By examining the problem, we will find a way to fix the model that 

is conceptually simple, but leads to a more challenging joint inference problem. 

Figure 7 illustrates the issue. For any given velocity parameters   and  , the model first predicts 

the mean      (from the sinusoidal function), and then predicts that the measured radial velocity 

     will come from a Normal distribution centered at     . But whenever the predictive probabil-

ity density falls outside the unambiguous interval, the model assigns probability to an event that 

cannot occur, because all measurements will always fall inside the unambiguous interval. In the 

example shown, the model places essentially all probability mass on an impossible event! 



How can we fix the model? We still be-

lieve it is a good model for the true radial 

velocity—the only problem is aliasing. 

The obvious solution is to augment the 

model to also model the process of alias-

ing by mapping the probability density for 

any value   outside the unambiguous 

interval to its alias   within the unambigu-

ous interval. This leads to a model for the 

aliased radial velocity      where only 

values inside the unambiguous interval 

have positive probability density, and 

each point   accumulates the density of 

each of its aliases in the original model. 

Mathematically, this is described by the 

wrapped normal density function 

(Breitenberger 1963): 

             ∑  

 

    

                 

               

 

With this definition in place, our only change to the original model is to replace the normal likeli-

hood in the uniform velocity model by the following wrapped normal likelihood: 

                  

The resulting density is shown in the right panel of Figure 7: it looks like the original normal densi-

ty but is positive only on the unambiguous interval and wraps around at      .
4
 

Inference 

Our high-level approach is to use the wrapped normal density in place of the normal density in 

the uniform velocity model and then fit the parameters. However, the likelihood surface is consid-

erably more complex than that of the simple linear model, so fitting the parameters is more diffi-

cult. This is again consistent with the general principle that joint inference is preferable, but it is 

usually more demanding computationally. 

Problem: Multi-Modal Likelihood 

Our goal is to find the parameters   and   that maximize the log-likelihood of the wrapped normal 

model. In the original model, the log-likelihood was extremely well behaved: it was convex (quad-

ratic) and the global optimum could be found easily by a least squares fit. In contrast, Figure 8 

shows examples of the (negative) log-likelihood surface of the wrapped normal model. We can 

see that it is non-convex and multi-modal. In cases with a lot of data (radial velocity measure-

ments from many different pulse volumes at different angles) the surface typically has one high 

                                                        
4
When the variance is larger, the appearance of the wrapped normal density is less like its normal 

counterpart. As variance approaches infinity, the distribution approaches a uniform distribution on 
             

 

Figure 7: Illustration of wrapped normal model. 
See text for explanation. 



peak centered near 

the “true” parameters 

surrounded by an an-

nular pattern circular 

ridges and valleys. 

When there is less 

data, the pattern of 

the surface is more 

complex and has 

more local optima. 

Thus, any fitting 

method risks getting 

caught in a local op-

timum, which can 

cause the fitted pa-

rameters to be worse 

than those found by 

other methods despite 

having a better model. 

A Graphical Model 

Recall that our overall goal is to create elevation profiles by fitting the velocity parameters for 

each different elevation bin. To share information across elevations we use the wrapped normal 

likelihood within the graphical model whose factor graph is shown in Figure 9. The variables in 

the model are velocity vectors            for height levels          . In addition to the likeli-

hood        for each level, the model connects the parameters at adjacent elevations using a 

 

Figure 8: Multi-modal nature of wrapped normal likelihood. Left: when 
there are many data points, the likelihood surface frequently has an 
annual pattern of ridges and valleys with a high peak in the middle. 

Right: with less data, the surface is more complex.  

 

 

Figure 9: Overall graphical model for velocity inference. Round nodes represent variables:    
is the unknown target velocity for elevation level i. Square nodes represent factors. 



weak Gaussian smoothness prior                                . This has two benefits. 

The first is statistical: by sharing information, a level with strong evidence can guide the search to 

the correct mode in a level with weak evidence. For example, in Figure 9, the evidence gets pro-

gressively weaker from the bottom level to the top level. The correct mode for the top level is not 

visually apparent when looking at the local evidence alone, but the lower levels strongly support 

the choice of the mode that aligns well with peaks of those likelihood functions. The second bene-

fit is computational: even when the evidence at a given layer is strong, the fitting method still has 

to find the correct mode, and evidence from adjacent layers can help initialize the search to do 

this quickly. 

Approximate Inference by Expectation Propagation 

Our goal is now to perform inference in the graphical model of Figure 9 to recover the posterior 

distribution of the    variables. For example, the posterior mean of    provides a point estimate 

of the velocity at level  . 

Unfortunately, one cannot easily apply standard message-passing algorithms in this model to 

compute the exact posterior distribution. The wrapped normal likelihood functions        are non-

Gaussian continuous potentials. Because of this, there is no way to compactly represent the 

messages or efficiently perform the key subroutines of multiplication and marginalization of poten-

tials. However, it is worth noting that if we had simply added the smoothness prior to the original 

uniform velocity model, all potentials would have remained Gaussian and exact inference would 

have remained efficient, because multiplication and marginalization can be done by simple pa-

rameter updates for Gaussian potentials (Murphy 2002). In fact, such a model is mathematically 

equivalent to the well-known Kalman filter. 

However, because exact inference is intractable in our model, we instead adopt an approximate 

message passing scheme based on the Expectation Propagation (EP) algorithm (Minka 2001), 

which approximates each likelihood term by a Gaussian potential. An important aspect of EP is 

that the approximations are not made a priori, but in the context of all other messages—

conceptually, EP focuses on finding a good approximation for the full posterior distribution instead 

of simply approximating the individual non-Gaussian potentials. Full details of the message pass-

ing scheme can be found in the conference paper (Sheldon et al. 2013). 

Local Search 

One additional detail of the message passing scheme is worth mentioning because it reveals that 

the basic computations performed by the overall approach have a simple and intuitive interpreta-

tion from the perspective of dealiasing. 

As part of EP, we must solve the subproblem of finding a Gaussian approximation of a particular 

non-Gaussian distribution       that is the product of the wrapped-normal likelihood        with a 

prior over    from adjacent levels. We do this using Laplace’s method—a variant of EP known as 

Laplace Propagation (Smola, Vishwanathan, and Eskin 2003)—for which we need to find the 

mode of      . 

A very simple and intuitive local search procedure converges to an approximate mode of       

under a one-term approximation to the infinite sum in the wrapped normal density. The local 

search begins with an initial value for   , and then alternates between two simple high-level 

steps. First, it uses the current value of    to dealias the radial velocity measurements by select-

ing the alias closest to the predicted mean for each data point. Then, it refits    by least squares 

using the current dealiased values. The search is very fast and usually converges in one or two 



steps, and there is no measurable loss in overall performance compared with a much slower nu-

merical approach using many more terms to approximate the infinite sum in the wrapped normal 

density. The overall algorithm then consists of very simple ingredients: local search as described 

here, together with standard operations on Gaussian potentials, such as those performed during 

Kalman filtering. 

Other Approaches for Profiling with Aliased Data 

While we are not aware of any previous work that jointly reasons about aliasing and velocity re-

construction, other authors have developed techniques to fit velocity profiles directly from aliased 

data through clever transformations of the data. 

Tabary, Scialom, and Germann (2001) observed that the derivative of the function      from the 

uniform velocity model with respect to   is also sinusoidal in   and linear in   and  , so it is pos-

sible to fit the velocity parameters by first estimating the derivatives (for example, by fitting a lo-

cally linear model to the radial velocity data) and then solving a least squares problem. Gao et al. 

(2004) followed a similar approach using finite differences to estimate the derivatives. The ad-

vantage of both of these methods over the original model is that they is more robust to aliasing 

because the derivative (slope) of the sinusoid is unchanged if the curve is shifted up or down by 

aliasing. The estimated derivative may be contaminated if the curve crosses an aliasing boundary 

within the window used to make the estimate; however, such an error leads to very large values 

for the derivative that one can usually recognize and discard from the analysis. 

While these methods are much more robust to aliasing than basic VAD, they are also subject to 

some limitations. In our conference paper (Sheldon et al. 2013), we extended and theoretically 

analyzed the gradient-based velocity azimuthal-display (GVAD) method of Gao and Droegemeier 

(2004). We showed that GVAD has the downside of increasing the variance of the parameter es-

timates by a factor related to the size of the window used to estimate the slope, and quantified 

precisely a tradeoff inherent in this approach: smaller windows lead to more noise in the fitting 

process, whereas larger windows lead to more aliasing errors. In the conditions frequently pre-

sent during bird migration (low Nyquist velocity, increased fine-scale variability in the velocity 

field), it can be difficult to find a window size that is large enough to keep noise levels under con-

trol while still being reasonably robust to aliasing. 

Experiments 

We evaluated the accuracy of six different velocity profiling algorithms on volume scans collected 

by the KBGM radar station in Binghamton, NY during the month of September 2010. We 

screened an initial set of 351 scans (one per hour for each night of the month) to eliminate scans 

with clear non-biological targets (precipitation or ground clutter) within 37.5 km of the station. Of 

the remaining 142 scans, 102 operated in the clear-air mode with Nyquist velocity            

ms
-1

 which is the lowest of all modes. We then used all pulse volumes with elevation angle    5 

degrees and range    37.5 km to fit velocity vectors for each 20 m elevation bin below 6000 m. 

We use the following baseline algorithm: 

• GVAD-0.01: The basic GVAD algorithm of Gao et al. (2004) with finite-difference derivative 

estimation. 

We then tested the following five algorithms which incorporate different improvements to the 

baseline that culminate in our full EP message-passing algorithm: 



• GVAD-0.10: An extension to GVAD to reduce variance by increasing the window size, at the 

cost of being slightly less robust to aliasing errors. 

• GVAD+LOCAL: GVAD-0.10 followed by the local search procedure described above. 

• GVAD+KALMAN: same as above, but followed by forward-backward message passing in a 

graphical model similar to the one in Figure 9 where the wrapped-normal likelihoods are ap-

proximated a priori by Gaussian potentials, so the model has the structure of a Kalman filter. 

• EP: same as above, but followed by additional forward and backward passes using the EP 

message updates, with the approximate local search procedure used within EP. 

• EP+HESS: same as above, but MATLAB’s numerical optimizer and the more accurate five-

term approximation to the infinite sum in the wrapped normal density are used in place of 

the local-search procedure. 

Additional details about the experimental setup and the algorithms can be found in the confer-

ence paper (Sheldon et al. 2013). 

Figure 10 shows the average RMSE and 95% confidence interval attained by each algorithm on 

the 142 test scans. All comparisons are highly significant (      ; paired t-test) except 

GVAD+LOCAL vs. GVAD+KALMAN and EP vs. EP+HESS. It is clear from the results that each 

of the improvements we proposed makes a substantial improvement to performance. GVAD-0.10 

is much better than GVAD-0.01, highlighting the importance of our extension to reduce variance 

by increasing the window size. By adding the simple dealias-and-refit local search procedure, 

GVAD+LOCAL performs much better than GVAD alone. Finally, by performing approximate 

Bayesian inference with the more accurate wrapped normal likelihood, EP performs significantly 

better than GVAD+LOCAL. The lesser performance of GVAD+KALMAN indicates that the graph-

ical model structure alone does not explain the better performance of EP: the approach of ap-

proximating the wrapped normal likelihood in the context of the current posterior is important. Fi-

nally the performance of EP+HESS shows that EP loses no accuracy by using the approximate 

local search in the Laplace approximation. 

By examining individual scans (not shown), we observed that the better models were generally in 

close agreement about the direction of travel, but the GVAD-based models seemed to underesti-

 

Figure 10: Performance comparison on test scans. 



mate speed, which is likely due to not being completely robust to aliasing errors. The directions 

measured by the different algorithms were also in excellent agreement with human-labeled direc-

tions (mean error less than 10 degrees). 

Examples of Bird Migration Across the Northeastern US 

The application of this algorithm has yielded some exciting preliminary results and has the poten-

tial to uncover to new scientific knowledge about migration at large scales. We are currently ap-

plying this algorithm combined with other techniques to a database of 35,000 radar scans from 12 

radar stations in the northeastern US spanning August to November in 2010 and 2011 (i.e., most 

of the fall migration seasons for those years). Our goal is to produce three key pieces of infor-

mation for every hour of the night during this period for each radar station: a relative bird density 

and a direction and speed of movement for those birds. 

By using our method to produce these three pieces of information, we can describe some of the 

fundamental features of nocturnal bird movements over this part of the US. This type of descrip-

tion of bird movements does not exist for the scale and with the level of hourly detail for any loca-

tion in the US, so we are using our AI methods to reach new levels of visualization, interpretation, 

and analysis of bird migration. With this approach, we can produce graphics that show these 

basic attributes of nocturnal bird migration across the region, during the course of a night (e.g., to 

show when peak migration density occurs), and in many other ways. 

Figures 11 and 12 show examples of output from our model for visualizing bird migration. The 

night of 20 August 2010 (Figure 11 (a,b)) was a good night for migration in many portions of the 

Coastal Plain from New Jersey north to southern Maine and inland through the foothills of the 

Appalachians and Catskills. A snapshot taken two hours after local sunset shows the magnitude, 

direction of movement, and speed for birds aloft and the raw reflectivity and velocity data from 

which that information was extracted. Most birds are moving SW or WSW at the locations where 

 
                                        (a)                                                                        (b)                             

Figure 11: Reflectivity, velocity, average bird density, and direction and speed data from 12 
WSR-88D on 20 August 2010, two hours after local sunset. From left to right: (a) reflectivity, 
(b) velocity. Bubbles represent average bird density proportional to the number of birds aloft, 
whereas arrows represent an average direction of movement and length of the arrow repre-
sents average speed. This night shows a pattern typical of light to moderate bird migration. 



 

Figure 12: Reflectivity, velocity, average bird density, and direction and speed data from 12 
WSR-88D on 11 September 2010, four hours after local sunset. From left to right: (a) reflec-
tivity, (b) velocity. Bubbles represent average bird density proportional to the number of birds 
aloft, whereas arrows represent an average direction of movement and length of the arrow 

represents average speed. This night shows a pattern typical of heavy bird migration. Note, in 
particular, the distinctly different direction of movement in eastern Massachusetts. Automatic 
extraction of this type of information highlights patterns like this that would be otherwise inac-

cessible to radar ornithologists. 

 migration is occurring. Note, however, that there is variation among stations in the magnitude, 

direction, and speed of movements. This magnitude of movement is considered light to moderate 

migration. The night of 10 September 2010 (Figure 12 (a,b)) was an excellent night for migration 

across the same region. Heavy bird migration occurred, depicted here in a snapshot from four 

hours after sunset. Most movements were toward the SW or SSW, and the heaviest of those oc-

curred in central New York. 

Examining migration events in this way allows us to characterize bird movements, the conditions 

under which they occur, and the extent to which they vary in space and time. This information is 

invaluable for understanding not only how and where birds migrate, but also how protect valuable 

migration habitat, both in the air and on the ground. For example, visualizing the peak hour of bird 

density aloft over the 12 radar stations by month (Figure 13, a, b, c, d) shows us that densities 

tend to peak in the hours just after sunset, rather than closer to dawn. This suggests that in our 

study region, birds do not migrate for the whole night, but instead land after a few hours of flight. 

This type of characterization is much more powerful when done at large temporal and spatial 

scales, something made possible by the application of AI techniques and close collaborations 

between computer scientists and radar ornithologists. 

Conclusion 

Our approach to reconstructing the velocity fields of migrating birds detected by WSR-88D is a 

significant improvement over previous methods. Our algorithm will allow us to overcome a fun-

damental challenge of analyzing radar data to tap the potential information about bird migration 

available from the continent-scale WSR-88D network. By creating an AI tool to automate velocity 

data processing, we can extract information about bird migration more accurately and at a sub-

stantially larger scale than previously possible, and make advances in our knowledge of bird 



movements for science and conservation. Of particular value is the potential for using this newly 

possible understanding of bird migration from our radar studies as a platform to monitor and as-

sess ecosystem health. Many species of birds are excellent bioindicators (Holt and Miller 2011), 

and quantifying bird migration at regional and continental scales across 10-20 year intervals pro-

vides an invaluable opportunity to examine patterns of movements relative to changes in land-

scape and climate. 

Collaborations between computer scientists and domain scientists in sustainability-related fields 

can yield powerful insights and advances in domains of mutual interest. In our case, uniting radar 

ornithology with machine learning research has yielded previously inaccessible and unavailable 

information about the behaviors of birds migrating over the northeastern United States. This pow-

erful example can be a model for scaling up analyses to much larger spatial and temporal scales. 

Many different future analyses will benefit from having a robust quantification of bird densities and 

velocities aloft: for example, comparisons among radar stations in different parts of the US, com-

parisons with weather and climate data, and comparisons with species observations from eBird 

and other sources. Future work will expand on our existing dataset of 35,000 scans from 12 radar 

stations operating from 1 August to 30 November in 2010 and 2011 in the Northeast US to in-

clude the entire continent. Our approach also highlights additional algorithms necessary to con-

tinue the process of exploring this massive dataset. For example, a remaining challenge is to au-

tomate the screening of non-biological targets and to perform these analyses in real-time. A de-

tailed understanding of the velocity field is a key first step toward this goal (Dokter et al. 2011); 

complete solution will likely involve applications of machine learning algorithms as well.  

 

Figure 13: Percentage of peak average bird density by hour relative to sunset for 2010 and 
2011 from 12 WSR-88D in the Northeastern US by month. Note that peak hour of bird densi-

ty is not constant during autumn. Such information is valuable for understanding when the 
largest number of birds is aloft, which is critical for conservation planning to mitigate poten-

tial hazards such as wind turbine operation and artificial lighting. 



This article has described a case study in the AI techniques underlying automated analysis of bird 

migration at large scales using radar data. A fully automated continent-scale analysis of bird mi-

gration may be game changing in terms of understanding this global ecological process and pro-

tecting the system from growing anthropogenic threats. Recent advances in the new field of 

Computational Sustainability have the potential to make this a reality. We believe it is now possi-

ble to study migration at continent scale by integrating radar data together with complementary 

sources of information such as citizen science data from eBird and acoustic monitoring. Each of 

these data sources is available at the continent scale but provides only partial information about 

bird migration. The synthesis of these diverse data sources using novel analysis approaches will 

allow us to reconstruct, understand, and forecast nightly bird migrations at the continental scale.  
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